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Abstract

Anticipating future actions is inherently uncertain.
Given an observed video segment containing ongoing ac-
tions, multiple subsequent actions can plausibly follow.
This uncertainty becomes even larger when predicting far
into the future. However, the majority of existing action an-
ticipation models adhere to a deterministic approach, ne-
glecting to account for future uncertainties. In this work,
we rethink action anticipation from a generative view, em-
ploying diffusion models to capture different possible fu-
ture actions. In this framework, future actions are itera-
tively generated from standard Gaussian noise in the la-
tent space, conditioned on the observed video, and subse-
quently transitioned into the action space. Extensive exper-
iments on four benchmark datasets, i.e., Breakfast, 50Sal-
ads, EpicKitchens, and EGTEA Gaze+, are performed and
the proposed method achieves superior or comparable re-
sults to state-of-the-art methods, showing the effectiveness
of a generative approach for action anticipation. Our code
and trained models will be published on GitHub.

1. Introduction
In contexts such as human-machine cooperation and robotic
assistance, the anticipation of potential future daily-living
actions is vital. For instances where timely assistance is
needed or proactive dialogues are essential, the capability
to accurately predict actions, even in the absence of di-
rect observation, is of utmost importance. Yet, the ever-
changing landscape of daily activities introduces a natural
unpredictability to future actions, as depicted in Fig. 1. This
inherent uncertainty becomes even larger if we are going
to predict far into the future, which poses significant chal-
lenges to the precise anticipation of future actions. Conse-
quently, modeling the underlying uncertainty may be bene-
ficial, allowing to capture different possible futures.

Addressing the intricate challenges and uncertainties of
action anticipation calls for a departure from conventional
methods. Traditional approaches [13, 18, 27, 45] predom-
inantly employ a discriminative and deterministic stance,

Walk in Open cupboard Take cup Uncertain future

Pour coffee Pour milk

Pour sugarPour coffee

Pour water Add teabagObservation

Figure 1. The inherent uncertainty in predicting future actions
presents a complex scenario where, given a single observation,
multiple feasible future action sequences may emerge. Example
frames are from the Breakfast [30] dataset.

framing action prediction as a classification task with de-
terministic future outcomes. This approach, however, can
inadvertently diminish the visibility of plausible alternative
actions [60]. Although probabilistic models [1, 38, 60], in-
cluding generative models like GANs [60] and VAEs [38],
have been introduced to embrace the non-deterministic
essence of future anticipations, they rely on action labels
from observed frames, thereby constraining their immedi-
ate applicability. As such, a model that acknowledges in-
herent uncertainties and supports direct deployment is of
paramount importance.

Within this context, we rethink action anticipation from
a generative view, introducing an end-to-end probabilistic
generative model, DIFFANT. Leveraging diffusion mod-
els [23, 47], which have emerged as a paradigm with sig-
nificant promise across various domains, our approach it-
eratively generates future actions in the latent space from
the standard Gaussian noise. To adapt the diffusion models
for action anticipation, we extend the standard models by
introducing a future action embedding function and an ac-
tion predictor. Moreover, to enhance the precision of our
predictions, we incorporate visual observations as condi-
tional information and employ an encoder-decoder struc-
ture [5, 18, 53] for seamless integration. We evaluate DIF-
FANT on four standard benchmarks for long-term action
anticipation, achieving state-of-the-art results on Breakfast,
50Salads, and EGTEA Gaze+, and comparable results on
EpicKitchens. In summary, our main contributions are:
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• A probabilistic generative approach, DIFFANT, for long-
term action anticipation, employing diffusion models and
leveraging their stochastic and continuous nature to itera-
tively refine predictions and navigate the intrinsic uncer-
tainties that exist in predicting future actions.

• We conduct extensive experiments on four widely used
benchmark datasets, i.e., Breakfast, 50Salads, EpicK-
itchens, and EGTEA Gaze+. Our results consistently
demonstrate superior or comparable performance to state-
of-the-art deterministic methods.

• We present an in-depth analysis of our approach, demon-
strating that our model surpasses the current state-of-the-
art probabilistic method.

2. Related Work

Action Anticipation aims to predict future actions given
a video clip of the past and present. Many approaches
initially investigated different forms of action and activ-
ity anticipation from third person video [13, 15, 18, 27].
Recently, along with development of multiple challenge
benchmarks [8, 9, 20, 34], the first-person (egocentric) vi-
sion has also gained popularity. To accurately predict future
actions, the summarization of temporal progression of past
actions is essential. To model the past action progression,
earlier methods mainly used RNN [13, 14] or TCN [27]-
based architectures, which have been shown to be inferior
to the recent Transformer-based approaches [16, 18, 40, 62].
Based on the predicted time horizon, action anticipation ap-
proaches can be broadly grouped into two categories [61]:
short-term anticipation approaches [8, 9] and long-term
anticipation approaches [13, 20]. While short-term ap-
proaches predict actions a few seconds into the future, long-
term approaches aim to predict a sequence of future actions
(with their durations) up to several minutes into the future.

Long-term Anticipation. An initial work [13] intro-
duced two distinct models for long-term action anticipation.
While the RNN model performed in a recursive manner, the
CNN model outputs a sequence of future actions in the form
of a matrix in one single step. Ke et al. [27] developed a
model targeting the prediction of a specific future action,
bypassing the need for anticipating intermediate actions to
avoid error accumulations. Farha et al. [2] introduced a cy-
cle consistency module to predict past activities using the
projected future, demonstrating improved outcomes in com-
parison to its counterpart lacking the consistency module.
Sener et al. [45] suggested a multi-scale temporal aggrega-
tion model that aggregates past visual features in condensed
vectors and then iteratively predicts future actions using an
LSTM. Recently, Transformer-based approaches [18, 40]
have been also employed for long-term anticipation. Differ-
ent from these approaches, our method is non-deterministic
and is capable to take the uncertain future into account.

Uncertainty-aware Anticipation. To address the inherent
uncertainty involved in forecasting future actions, various
researches have proposed non-deterministic approaches, in-
cluding generating an array of potential outcomes with mul-
tiple rules [42, 55] and by sampling from the learned distri-
bution [1, 37, 38, 60]. Vondrick et al. [55] proposed train-
ing a mixture of networks, each aiming to predict one po-
tential future. Piergiovanni et al. [42] proposed a differen-
tiable grammar model and applied adversarial techniques
to enable efficient learning and avoid enumerating all pos-
sible rules. Farha and Gall [1] anticipated all subsequent
actions and durations stochastically, employing an action
model and a time model trained to predict the probability
distribution of future action labels and durations. In the lit-
erature, probabilistic generative models like GANs [60] and
VAEs [38] have been employed to capture the uncertain as-
pects of future predictions. Nonetheless, these methods typ-
ically require the action labels of observed frames as inputs,
which are obtained either from ground truth labels or in-
ferred through an action segmentation model [11]. Draw-
ing inspiration from these works, we approach the antici-
pation task from a generative perspective, employing diffu-
sion models to generate diverse and plausible future actions,
while leveraging the rich visual features.

Diffusion Models. Initially unified with score-based mod-
els [48–50], diffusion models [23, 46, 47] are renowned for
their stable training processes, which do not rely on ad-
versarial mechanism for generative learning. These mod-
els have demonstrated remarkable achievements across var-
ious domains, including image generation [10, 44, 56], nat-
ural language generation [19, 33, 59], text-to-image synthe-
sis [21, 28], and audio generation [31, 32]. Recent advances
have extended the application of diffusion models to im-
age and video comprehension tasks within computer vision,
such as object detection [7], image segmentation [3, 4],
video forecasting and infilling [24, 54, 57], and action seg-
mentation [35]. In this work, we leverage the iterative re-
finement capabilities of diffusion models for future predic-
tion. To the best of our knowledge, this work is the first one
employing diffusion models for action anticipation.

3. Diffusion Action Anticipation

To address the inherently non-deterministic nature of fu-
ture action anticipation, we present DIFFANT, a novel dif-
fusion model for action anticipation. The model integrates
an action embedding function and an action predictor into
the original diffusion framework, enabling the incorpora-
tion of discrete future actions within both the forward and
reverse diffusion processes (see Fig. 2). To refine the pre-
dictive capabilities of DIFFANT, an encoder-decoder archi-
tecture [5, 18, 53] is utilized to assimilate visual observa-
tions as conditional information. We acquaint the reader
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Standard Diffusion Anticipation
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Standard Diffusion Anticipation

Figure 2. Concept of DIFFANT. Standard diffusion models recon-
struct original data z0 from pure noise zS . Our approach integrates
discrete future actions a by introducing an embedding function
and a predictor to facilitate the conversion between continuous z0
and discrete a.

with the problem statement and the background of diffu-
sion models in Section 3.1. Subsequently, the inference and
training processes of the proposed method are introduced in
Section 3.2 and 3.3, respectively.

3.1. Preliminaries

Problem Statement. Given the past observation containing
observed video features F ∈ RL×K with K dimensions
for L frames, the long-term anticipation task aims to pre-
dict following N future actions a within a video, consisting
of action classes ac ∈ RN×C and durations at ∈ RN×1,
where C is the total number of action classes.

Diffusion Models aim to approximate the data distribution
q(z0) with a model distribution pθ(z0) [23, 47]. A diffusion
model typically contains forward and reverse processes.
The forward process or diffusion process corrupts the real
data z0 ∼ q(z0) into a series of noisy data z1, z2, . . . and
finally into a standard Gaussian noise zS ∼ N (0, I). For
each forward step s ∈ [1, 2, . . . , S], the perturbation is con-
trolled by q(zs|zs−1) = N (zs;

√
1− βszs−1, βsI), with

predefined βs ∈ (0, 1) as different variance scales. By
denoting αs = 1 − βs and ᾱs =

∏s
i=1 αi, we can di-

rectly obtain zs from z0 in a closed form without recursion:
q(zs|z0) = N (zs;

√
ᾱsz0, (1−ᾱs)I), which can be further

simplified using the reparameterization trick [29].
The reverse process or denoising process tries to grad-

ually remove the noise from zS ∼ N (0, I) to recon-
struct the original data z0. Each reverse step is defined as
pθ(zs−1|zs) = N (zs−1;µθ(zs, s), σ

2
sI), where σ2

s is con-
trolled by βs, and µθ(zs, s) is a predicted mean parameter-
ized by a step-dependent diffusion model fθ(zs, s). Several
different ways [36] are possible to parameterize pθ, includ-
ing the prediction of mean µθ(zs, s), the prediction of the
noise ϵ, and the prediction of z0. We choose to predict z0,
as suggested in several related works [19, 33, 35].

3.2. Overall Inference Pipeline

To better harness observed video features F as conditional
information for controlled future action generation, we pro-
pose an encoder-decoder structure depicted in Fig. 3b.

Encoder. The input features F , typically extracted per short
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(a) Details of a decoder layer.
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S 
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(b) Inference pipeline.

Figure 3. Inference pipeline of DIFFANT. (a) The decoder uses ac-
tion queries Q and step information to refine the noisy futures zS ,
conditioned on encoded past observations E via cross-attention.
(b) Future action embeddings zS are drawn from the standard
Gaussian distribution and iteratively denoised to produce the final
z̃0, which is then decoded into future action labels and durations.

clip by pre-trained models, are first processed through an
encoder to incorporate long-range temporal context, mak-
ing them task-oriented. Although our framework permits
flexibility in the choice of the encoder, we opt for the stan-
dard transformer model used in DETR [5] and FUTR [18].
We begin by passing the video features F through a linear
layer, which adjusts them to a suitable hidden dimension D,
yielding transformed features F ∗. These, combined with
sinusoidal positional encodings P ∈ RL×D, enable the en-
coder to generate refined representations E ∈ RL×D. Such
representations are conducive to action anticipation and can
be mapped to the action space using a linear classifier, fa-
cilitating observation segmentation.

Decoder. Our decoder, as depicted in Fig. 3a, follows the
query-based paradigm [5, 63], originally proposed to elim-
inate handcrafted components in object detection and re-
cently applied in long-term action anticipation [18, 40]. It
processes noisy action embeddings zS ∈ RM×D′

and ac-
tion queries Q ∈ RM×D′

, generating refined futures z̃0 in
parallel, under the guidance of encoded past observations
E via cross-attention. The action queries Q consist of M
learnable tokens of dimension R1×D′

, with their temporal
order aligned with the sequence of future actions, i.e., each
query directly corresponds to a respective future action [18].

3
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Figure 4. Training pipeline. By employing an embedding function
and an action predictor, we integrate the discrete future actions
a into the standard diffusion models. The training optimizes a
variational lower bound objective, which combines an embedding
reconstruction loss Lemb

s−1 and an action prediction loss Lpred.

Predictor. The predictor decodes the refined future em-
beddings z̃0 into action labels ãc ∈ RM×C and durations
ãt ∈ RM×1 through two dedicated linear layers. To guar-
antee the non-negativity of the predicted durations, an ex-
ponential activation function is employed.

Inference. During inference, future action embeddings zS
are drawn from a standard Gaussian distribution N (0, I).
Alternatively, we can initialize zS with zero vectors (mean
of the standard Gaussian distribution) for deterministic re-
sults. The decoder is made step-aware by embedding the
current diffusion step s = S with sinusoidal positional en-
codings, futher integrated via a multi-layer perceptron. The
decoder inputs zS , Q, and step data, aiming to initially rec-
tify the noisy futures and predict z̃0, taking cues from the
encoded past observations E via cross-attention. For E that
does not match the decoder’s dimension D′, a linear trans-
formation adjusts its dimensionality. To enable the iterative
reverse diffusion process, we apply the forward chain to get
z̃S−1 and input it with the updated step s = S − 1 to the
decoder. By iteratively removing noise, a final sample z̃0
is generated via a trajectory zS , z̃S−1, ..., z̃0. To accelerate
the reverse process, we adopt DDIM [47] to skip steps in the
trajectory. The resulting action embeddings z̃0 are decoded
into future action labels and durations by the predictor.

Given the preset number of action queries M may sur-
pass the actual number of future actions N , an EOS class is
introduced to signify sequence termination. In the inference
stage, following [18], all predictions after the first predic-
tion of EOS are discarded. Moreover, we apply Gaussian
normalization to the predicted durations to make the sum
of all durations equates to one, consistent with the previous
work [13, 18].

3.3. Training

To integrate discrete actions a into the continuous diffusion
processes, we extend standard diffusion models with a fu-
ture action embedding function and an action predictor to

facilitate the conversion between continuous embeddings z0
and discrete actions a, as illustrated in Fig. 4. The following
details DIFFANT’s learning process.

Forward Process with Future Actions as Input. DIF-
FANT takes future actions a, which comprise action classes
ac ∈ RM×C and durations at ∈ RM×1, where C is
the total number of action classes. It first linearly trans-
forms the one-hot encoded classes and real-value dura-
tions into embeddings, EMBc(a

c) and EMBt(a
t), respec-

tively. An additional linear layer then merges these em-
beddings to form a joint feature space EMB((ac,at)) =
fa([EMBc(a

c), EMBt(a
t)]). When only action classes are

predicted, the model bypasses fa and directly concatenates
the class embeddings. This step facilitates the inclusion of
discrete future actions into the diffusion model’s forward
process by extending the original forward chain to a new
Markov transition qϕ(z0|a) = N (EMB(a), β0I), as shown
in Fig. 2.

Reverse Process with Conditional Denoising. The re-
verse process aims to recover the initial state z0 from the
noised version zS by applying the denoising probability
pθ(z0:S) := p(zS)

∏S
s=1 pθ(zs−1|zs). Incorporating en-

coded past observations E as conditional inputs transforms
the learning process into pθ(zs−1|zs, E), modeled with
the proposed DIFFANT fθ(zs, s, E). For training, in line
with [19, 33], we streamline the variational lower bound
(LVLB) to consist of an embedding reconstruction loss and
an action prediction loss, LVLB =

∑S
s=1 Lemb

s−1 +Lpred. The
embedding loss Lemb

s−1 is calculated by:

Lemb
s−1 =

{
||z0 − fθ(zs, s, E)||2 if 2≤s≤S

||EMB(a)− fθ(z1, 1, E)||2 if s = 1
(1)

and the prediction loss Lpred is defined as: Lpred =
− log pθ(a

c|z0, E) − log pθ(a
t|z0, E), under the assump-

tion that action classes and durations are conditionally inde-
pendent for mathematical convenience, following common
practices [38]. The action class log-likelihood is computed
using cross-entropy and the duration log-likelihood is com-
puted by the mean squared error (MSE) loss. More details
are provided in the supplementary material.

Training Objective. In addition to LVLB for the decoder
outputs, we append a classification head to the encoder and
apply a cross-entropy loss Lseg and a temporal smoothness
loss Lsmooth as auxiliary supervision. The temporal smooth-
ness loss [12] is computed as the mean squared error of the
log-likelihoods between adjacent video frames to promote
the local similarity along the temporal dimension. The final
training objective is thus defined as

L = Lseg + Lsmooth + LVLB. (2)
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Ty
pe Back-

bone Methods Breakfast β (α = 0.2) Breakfast β (α = 0.3) 50Salads β (α = 0.2) 50Salads β (α = 0.3)

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

Pr
ed

.l
ab

el

Fisher

RNN [13] 18.11 17.20 15.94 15.81 21.64 20.02 19.73 19.21 30.06 25.43 18.74 13.49 30.77 17.19 14.79 9.77
CNN [13] 17.90 16.35 15.37 14.54 22.44 20.12 19.69 18.76 21.24 19.03 15.98 9.87 29.14 20.14 17.46 10.86
UAAA [1] 16.71 15.40 14.47 14.20 20.73 18.27 18.42 16.86 24.86 22.37 19.88 12.82 29.10 20.50 15.28 12.31
Timecond. [27] 18.41 17.21 16.42 15.84 22.75 20.44 19.64 19.75 32.51 27.61 21.26 15.99 35.12 27.05 22.05 15.59

Fe
at

ur
es

Fisher CNN [13] 12.78 11.62 11.21 10.27 17.72 16.87 15.48 14.09 – – – – – – – –
TempAgg [45] 15.60 13.10 12.10 11.10 19.50 17.00 15.60 15.10 25.50 19.90 18.20 15.10 30.60 22.50 19.10 11.20

I3D

TempAgg [45] 24.20 21.10 20.00 18.10 30.40 26.30 23.80 21.20 – – – – – – – –
Cycle Cons[2] 25.88 23.42 22.42 21.54 29.66 27.37 25.58 25.20 34.76 28.41 21.82 15.25 34.39 23.70 18.95 15.89
A-ACT [22] 26.70 24.30 23.20 21.70 30.80 28.30 26.10 25.80 35.40 29.60 22.50 16.10 35.70 25.30 20.10 16.30
FUTR [18] 27.70 24.55 22.83 22.04 32.27 29.88 27.49 25.87 39.55 27.54 23.31 17.77 35.15 24.86 24.22 15.26
DIFFANT 25.33 24.59 24.39 22.74 32.13 31.83 31.18 30.77 36.13 34.00 30.46 25.29 34.09 30.14 26.34 20.23

Table 1. Comparison with state-of-the-art methods on Breakfast [30] and 50Salads [51] using MoC (%). Bold and underlined numbers
indicate the highest and second highest accuracy, respectively. DIFFANT achieves the state-of-the-art performance in almost all settings.

4. Experimental Setup

Datasets. The Breakfast [30] dataset comprises 1,712
videos of 52 different individuals making breakfast in 18
different kitchens, totalling 77 hours. Every video is catego-
rized into one of the 10 activities related to breakfast prepa-
ration. The videos are annotated by 48 fine-grained actions.
The 50Salads [51] dataset comprises 50 top-view videos of
25 people preparing a salad. The dataset contains over 4
hours of RGB-D video data, annotated with 17 fine-grained
action labels and 3 high-level activities. EpicKitchens [8]
and EGTEA Gaze+ [34] are egocentric datasets. EpicK-
itchens contains 39,596 segments labeled with 125 verbs,
352 nouns, and 2,513 combinations (actions), totalling 55
hours. EGTEA Gaze+ contains 28 hours of videos includ-
ing 10.3K action annotations, 19 verbs, 51 nouns, and 106
unique actions.

Metrics. For both Breakfast and 50Salads datasets, we cal-
culate the mean accuracy over classes, averaged across all
future timestamps within a specified anticipation duration.
We observe the first portion (α) of a video, adhering to
benchmarks from [13] that set α values at 0.2 or 0.3. Sub-
sequent predictions cover segments β of the entire video,
where β can be one of {0.1, 0.2, 0.3, 0.5}. For our eval-
uation metrics, we average results across 4 splits for the
Breakfast dataset and 5 splits for the 50Salads dataset. For
the EpicKitchens and EGTEA Gaze+ datasets, we employ
a multi-label classification metric (mAP) targeting specific
action classes. A portion α of each untrimmed video serves
as input to forecast all subsequent action classes, represent-
ing the remaining (1− α) duration of the video. As in [39],
we use α = {0.25, 0.50, 0.75} for evaluation. In alignment
with [39], we also report the mAP metrics in both low-shot
(rare) and many-shot (freq) scenarios.

Architecture Details. The encoder has four layers with a

hidden dimension D = 256. The decoder has 8 layers for
50Salads and 4 layers for the other datasets. The decoder
dimensions D′ are set at 1024 for Breakfast and EpicK-
itchens, 512 for EGTEA Gaze+, and 256 for 50Salads. We
set the number of action queries M to 8 for Breakfast and
16 for 50Salads, since 50Salads includes more actions than
Breakfast in a video. For EpicKitchens and EGTEA Gaze+,
we set M to 1, as the task is treated as a multi-label task
defined in [39].

Training Details. To allow a fair comparison to other state-
of-the-art long-term action anticipation methods, we use the
pre-extracted I3D features [6] as input visual features F for
all datasets, provided by [12] and [39]. We sample the I3D
features with a stride of 3 for Breakfast and 50Salads and
1 for EpicKitchens and EGTEA Gaze+. In training, we set
the observation rate α ∈ {0.2, 0.3, 0.4, 0.5} for Breakfast
and 50Salads and additionally use {0.6, 0.7, 0.8} for EpicK-
itchens and EGTEA. We use AdamW optimizer and train
our model for 50, 30, 50, 100 epochs for Breakfast, 50Sal-
ads, EpicKitchens, and EGTEA Gaze+, respectively. We
employ a cosine annealing warm-up scheduler with warm-
up stages of 10 epochs. The total number of steps is set as
S = 1000. To sample diffusion steps s, we adopt impor-
tance sampling [19, 41] in our experiments. For all trained
models, we apply gradient clipping at 1. More training de-
tails can be found in the supplementary material.

5. Results

To compare DIFFANT with the state-of-the-art methods in
Section 5.1 and conduct ablation studies in Section 5.2, we
initialize the action embeddings zS as zeros for determinis-
tic predictions. In Section 5.3 and Section 5.4, we sample
zS from the standard Gaussian distribution, and present an
in-depth analysis of our approach.
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Method EpicKitchens EGTEA Gaze+

All Freq Rare All Freq Rare

I3D [6] 32.7 53.3 23.0 72.1 79.3 53.3
ActionVLAD [17] 29.8 53.5 18.6 73.3 79.0 58.6
Timeception [25] 35.6 55.9 26.1 74.1 79.7 59.7
VideoGraph [26] 22.5 49.4 14.0 67.7 77.1 47.2
EGO-TOPO [39] 38.0 56.9 29.2 73.5 80.7 54.7
ANTICIPATR [40] 39.1 58.1 29.1 76.8 83.3 55.1
DIFFANT (Ours) 38.7 55.0 31.0 77.3 83.5 61.4

Table 2. Comparison with state-of-the-art methods on EpicK-
itchens [8] and EGTEA Gaze+ [34] in mAP. Bold and underlined
numbers indicate the highest and second highest accuracy, respec-
tively. DIFFANT achieves competitive results on EpicKitchens and
sets a new state-of-the-art on EGTEA Gaze+.

5.1. Comparison with the State-of-the-art

In Table 1, we compare our methods with the state-of-the-
art methods on Breakfast and 50Salads. While we list the
methods that take the action labels predicted by an action
segmentation method (e.g., [43]) at the top of the table for
completeness, we mainly compare our method with meth-
ods that take visual features as input. Note that we do not
list the results of ANTICIPATR [40] in Table 1, as they used
a different evaluation protocol [61]. DIFFANT achieves the
state-of-the-art performance in almost all experimental set-
tings on Breakfast and 50Salads. Notably, our method out-
performs other methods with a large margin for long time
horizons for anticipation, e.g., for α = 0.3 and β = 0.5,
accuracy improvement on Breakfast and 50Salads is 18.9%
(25.87 → 30.77) and 24.1% (16.30 → 20.23), respectively.

Next we evaluate our method on EpicKitchens and
EGTEA Gaze+, as presented in Table 2. The results indicate
that our approach achieves competitive results when com-
pared to the state-of-the-art method [40] on EpicKitchens.
While our method ranks second for the All set, it achieves
the best results for the more challenging Rare set. Notably,
our approach does not require separate training for the en-
coder and decoder, a step that is necessary in [40]. For
EGTEA Gaze+, our method establishes a new benchmark,
setting the state-of-the-art across all sets.

5.2. Ablation Study

Extensive ablation studies are performed to validate the de-
sign choices in our method. The experiments on Breakfast
are conducted across all splits, and the results are averaged
across these splits. Default settings are marked in gray .

Encoder Architecture. We first evaluate the impact of dif-
ferent encoder architectures in Table 3. In our default set-
ting, we follow [5, 18] to use a transformer encoder with
global attention across all past frames. As locality of fea-

Encoder β (α = 0.3)

0.1 0.2 0.3 0.5

DETR Encoder [5] 32.13 31.83 31.18 30.77
DETR Encoder [5] (local) 31.01 30.58 30.38 29.16
RoFormer [52] 22.26 21.94 22.42 21.20

Table 3. Impact of the encoder architecture on Breakfast in MoC.

Loss Breakfast β (α = 0.3) EGTEA

Lseg Lsmooth LVLB 0.1 0.2 0.3 0.5 All

✗ ✗ ✓ 19.19 18.31 17.70 16.14 74.11
✓ ✗ ✓ 31.66 31.44 32.17 30.91 77.07
✓ ✓ ✓ 32.13 31.83 31.18 30.77 77.33

Table 4. Impact of loss terms. The action segmentation loss
Lseg substantially improves the anticipation performance, indicat-
ing the importance of recognizing past frames in effectively an-
ticipating future actions. The temporal smoothness loss Lsmooth is
optional and slightly improves the results, but not for all settings.

M
Breakfast β (α = 0.3)

0.1 0.2 0.3 0.5

6 31.42 31.20 31.38 30.57
8 32.13 31.83 31.18 30.77

10 30.50 30.01 30.43 28.57
12 29.18 28.28 29.39 26.88

(a) # Action queries.

Steps Breakfast β (α = 0.3)

0.1 0.2 0.3 0.5

25 32.32 31.81 33.05 30.14
50 31.90 31.46 33.14 30.09

100 32.13 31.83 31.18 30.77
200 31.41 31.02 31.38 30.11

(b) # Inference steps.

Table 5. Ablation study on number of action queries M and infer-
ence steps on Breakfast. (a) Using M = 8 queries is sufficient.
(b) 100 inference steps are sufficient.

tures has been found particularly beneficial for action seg-
mentation [58], we similarly apply a hierarchical attention
mask to the attention matrix, forcing the shallow layers to
concentrate on neighboring frames, while deeper layers are
allowed to attend to global frames. Details can be found in
the supplementary material. Additionally, we employ the
rotary position embedding technique [52], which allows to
endow the transformer with relative positional embeddings
without learnable parameters and has been widely adopted
in the NLP community. The default setting consistently out-
performs the other architectures across all prediction hori-
zons (β), highlighting its efficacy in this context.

Loss Terms. In Table 4, we assess the impact of the ac-
tion segmentation loss and the temporal smoothness loss on
Breakfast and EGTEA Gaze+. As also observed in [18],
the action segmentation loss substantially enhances the an-
ticipation performance. This underscores the importance
of recognizing past frames to effectively anticipate future
actions. While introducing the temporal smoothness loss
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Observation Prediction

GT

Mode

Sample 1

Sample 2

SIL take bowl pour cereals pour cereals pour milk SIL

pour cereals pour milk spoon
sugar pour milk stir cereals SIL

pour cereals pour milk spoon
sugar pour milk stir cereals SIL

pour cereals pour milk SIL

Figure 5. Qualitative results on Breakfast. Observations are shown on the left, while the ground-truth labels and predicted results, i.e., one
deterministic prediction and two randomly sampled results, are displayed on the right. We set α as 0.3 and predict all subsequent actions
in this experiment. Action labels and durations are decoded as frame-wise action classes. More qualitative results are provided in the
supplementary material.

Method m
β (α = 0.2) β (α = 0.3)

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

[1] 25 15.69 14.00 13.30 12.95 19.14 17.18 17.38 14.98
Ours 25 24.74 22.89 22.09 22.34 30.92 30.17 28.85 27.46

Ours

5 25.10 22.80 22.00 21.07 30.83 29.64 28.32 25.88
10 24.94 23.34 22.74 21.78 30.86 29.31 28.66 26.66
25 24.74 22.89 22.09 22.34 30.92 30.17 28.85 27.46
50 24.81 23.24 22.26 22.67 30.92 30.37 28.80 27.22

100 24.77 23.29 22.42 22.18 30.98 30.05 28.67 27.40

Table 6. Diverse anticipation performance on Breakfast averaged
over m random samples for each observation. DIFFANT signifi-
cantly exceeds the probabilistic approach [1].

into the framework improves the performance on EGTEA
Gaze+, its effect on Breakfast is not clearly evident.

Number of Action Queries. In Table 5a, we analyze the
impact of the number of action queries M . We vary M ,
starting from 6 and increasing in increments of 2 up to 12.
For the Breakfast dataset, 6-8 queries are enough. Using
more than 8 queries decreases the accuracy.

Diffusion Inference Steps. We adopt DDIM [47] to skip
inference steps in our work. We vary the number of total
inference steps and report the results in Table 5b. Using
100 iterations performs for most settings best, but even 25
iterations delivers reasonable results.

5.3. Uncertainty-Aware Anticipation

To evaluate the quality of our method for non-deterministic
anticipation, we use the protocols that have been proposed
in [1]. The protocols require the generation of m future
predictions for the same video observation, calculating ei-
ther the average accuracy of all generated predictions or the
top-1 accuracy. We first report the results for the averag-
ing protocol. For our method, we generate m future predic-
tions by randomly sampling m future action embeddings zS
from the Gaussian distribution N (0, I). We then compute
the average performance of these samples across all splits of

Method m
β (α = 0.2) β (α = 0.3)

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

[1] 25 28.89 28.43 27.61 28.04 32.38 31.60 32.83 30.79
Ours 25 31.27 29.87 29.40 30.11 37.38 37.01 36.29 34.80

Ours

– 25.33 24.59 24.39 22.74 32.13 31.83 31.18 30.77
5 27.62 25.32 24.79 24.37 35.12 32.76 31.11 29.27

10 28.77 27.49 27.36 27.16 35.63 34.16 32.96 31.59
25 31.27 29.87 29.40 30.11 37.38 37.01 36.29 34.80
50 31.08 30.54 30.34 31.52 37.35 38.13 37.51 36.22

100 32.43 32.00 31.87 33.27 38.26 39.10 39.79 38.54

Table 7. Diverse anticipation performance on Breakfast using top-
1 accuracy, i.e., accuracy of best match to ground truth of m ran-
dom samples for each observation. DIFFANT surpasses the prob-
abilistic approach [1]. – denotes the result of our approach in the
deterministic setting.

Breakfast. Since the previous probabilistic generative meth-
ods [38, 60] rely on ground truth action labels, we only com-
pare our approach with the probabilistic approach [1]. The
results for varying m are presented in Table 6, demonstrat-
ing that the averaged performance of DIFFANT maintains
relatively stable with respect to changes in m. Moreover,
our method significantly outperforms the approach [1] if we
use the same number of samples m = 25.

It is important to recognize that the provided ground
truth future in the dataset represents merely one among sev-
eral feasible futures. This is exemplified in Fig. 5, where the
left side depicts the observations, and the right side shows
the ground truth labels alongside three predictions from
DIFFANT. We label the prediction for zero zS as Mode
and two randomly sampled zS as Sample 1 and Sample 2.
Notably, while Sample 2 matches with the provided ground
truth, the other predictions also appear logical. Conse-
quently, we adopt the top-1 protocol proposed in [1], which
focuses on the performance of the prediction that best aligns
with the ground truth, acknowledging that the ground truth
represents just one of several possible futures. Specifically,
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Observation Prediction

GT
Interm.
991
Interm.
591
Interm.
191
Interm.
91
Interm.
1

SIL take cup add teabag add teabag pour water SIL

put pancake2plate
stirfry egg

cut fruit
SIL

pour juice
fry egg

pour coffee
put fruit2bowl

peel fruit
add teabag

pour water

Figure 6. Anticipation results of the intermediate inference steps on Breakfast. Observations are shown on the left, while the ground-truth
labels and predicted results are displayed on the right. α is set as 0.3 and all subsequent actions are predicted in this experiment. As the
inference step approaches 1, the predictions are gradually refined, and the ground truth actions emerge.

991 791 591 391 191 91 1
Intermediate inference step

0

10

20

30

M
oC

 [%
]

Figure 7. Intermediate anticipation performance on Breakfast. We
run our model 25 times for each split and show the overall mean
and standard deviation for the intermediate inference steps. α and
β are set as 0.3 and 0.5, respectively.

for m generated predictions for the same observation, we
select the prediction with the highest number of correctly
predicted future frames. The performance for different m
values is presented in Table 7. For comparison, we also
include results where zS is a zero vector (denoted with –
for m). The performance of our non-deterministic antici-
pations consistently surpasses that of our deterministic one
and the probabilistic approach [1] with few samples, under-
scoring the superior quality of DIFFANT. Furthermore, as
expected, we observe a consistent increase in performance
as the number of samples grows.

5.4. Intermediate Diffusion Anticipation

In this section, we delve into the denoising capability of the
proposed method and assess the anticipation performance
of the intermediate inference steps. As the total number of
diffusion steps is set as S = 1000, with 100 steps used in
inference, the inference trajectory becomes 991, 981, ..., 1.
Fig. 7 provides a quantitative perspective across these vary-
ing intermediate inference steps. For this evaluation, we
rerun our model 25 times and compute the performance of

each run for the randomly sampled zS . We then calculate
the mean and standard deviation of these runs for each par-
ticular inference step. A discernible trend emerges from the
figure: as the inference step approaches 1, there is a marked
rise in the performance. This upward trajectory signifies the
enhanced accuracy during the reverse diffusion process.

Fig. 6 presents the anticipation results derived at var-
ious intermediate inference steps. A noticeable progres-
sion is evident in the model’s predictions as the interme-
diate inference steps approach 1. The predicted actions be-
come sharper and more aligned with the ground truth over
time. Beginning from the 991-th step, the model discerns
activities related to egg cooking and juice preparation. As
the reverse diffusion progresses, the initially vague future
sharpens. Consequently, the model, leveraging the visual
observations, gains a deeper understanding and starts pre-
dicting actions pertinent to tea-making with increased ac-
curacy. Additional qualitative results can be found in the
supplementary material.

6. Conclusion
In this work, we have delved into the inherent challenges
of predicting future actions, emphasizing the uncertainties
that arise, especially when predictions extend far into
the future. The proposed method, DIFFANT, leverages
diffusion models to capture different possible future actions
in the latent space, conditioned on the observed video.
By introducing DIFFANT, we have showcased a novel
approach to explicitly account for the non-deterministic
nature of action anticipation. We have demonstrated the
advantages of our method through extensive experiments
on four benchmarks, achieving superior or comparable
results to state-of-the-art methods. As the realm of
action prediction continues to evolve, we believe that
solutions like DIFFANT, which embrace a generative
perspective, will play a pivotal role in navigating the
complexities and uncertainties of future action anticipation.
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Figure 8. Details of an encoder layer.

7. Additional Methodology Details
Encoder Architecture. Our encoder follows the trans-
former encoder used in DETR [5] and FUTR [18], as de-
picted in Fig. 8. The original video features F ∈ RL×K are
first passed through a linear layer, which adjusts them to a
suitable hidden dimension D, yielding transformed features
F ∗ ∈ RL×D. Subsequently, these transformed features are
combined with sinusoidal positional encodings P ∈ RL×D,
facilitating the encoder in producing refined representations
E ∈ RL×D via self-attention [53].

Training Objective. Our training objective consists of a
past observation recognition loss Lseg, a temporal smooth-
ness loss Lsmooth, and a variation lower bound loss LVLB:

L = Lseg + Lsmooth + LVLB.

Lseg is a cross-entropy loss and Lsmooth is computed as the
mean squared error of the log-likelihoods between adjacent
video frames to promote the local similarity along the tem-
poral dimension. We compute the variational lower bound
(LVLB) following the original diffusion process:

LVLB = Eq(z1:S |z0)

[
log

q(zS |z0)
pθ(zS)︸ ︷︷ ︸
Lemb

S

+

S∑
s=2

log
q(zs−1|z0, zs)
pθ(zs−1|zs, E)︸ ︷︷ ︸

Lemb
s−1

+ log
qϕ(z0|a)

pθ(z0|z1, E)︸ ︷︷ ︸
Lemb

0

− log pθ(a|z0, E)︸ ︷︷ ︸
Lpred

]
. (3)

Following [19, 33], we further simplify the training objec-
tive as follows:

LVLB =

S∑
s=1

Lemb
s−1 − log pθ(a|z0, E), (4)

where Lemb
s−1 =

{
||z0 − fθ(zs, s, E)||2 if 2≤s≤S

||EMB(a)− fθ(z1, 1, E)||2 if s = 1,

and − log pθ(a|z0, E) = − log pθ(a
c|z0, E) −

log pθ(a
t|z0, E), under the assumption that action

classes and durations are conditionally independent for
mathematical convenience, as described in Section 3.3.

8. Additional Implementation Details
Generation of the Local Attention Mask. Drawing from
the methodology outlined in [58], we conduct experiments
where a hierarchical attention mask is applied to the atten-
tion matrix. This approach enables shallow layers to con-
centrate on neighboring frames, while deeper layers are al-
lowed to attend to global frames. In each of the four encoder
layers, we create an attention mask whose window size ex-
ponentially increases with the depth of the layer, with spe-
cific window sizes set at {9, 33, 129, 513}. This exponential
growth is motivated by the intuition that lower layers cap-
ture finer, local details, while higher layers integrate more
global, contextual information. During the self-attention
computation, this mask is employed to assign minimal at-
tention scores to positions outside the defined window, ef-
fectively minimizing their influence.

Training. For training, we tailor the batch size and learning
rate to each dataset. Specifically, 50Salads utilizes a batch
size of 8 and a learning rate of 1e-3. Breakfast is set with
a batch size of 64 and a learning rate of 5e-4. Both EpicK-
itchens and EGTEA Gaze+ share a batch size of 32, but
while EpicKitchens has a learning rate of 2.5e-4, EGTEA
Gaze+ uses 5e-4. All experiments are done with a machine
equipped with 4 RTX A6000 GPUs.

To sample diffusion step s during training, we em-
ploy importance sampling [41] in our experiments, follow-
ing [19]. In contrast to uniform sampling, the importance-
weighted sampling algorithm allocates more steps to diffu-
sion steps with a larger loss value Ls, and fewer to others:

L = Es∼ps

[
Ls

ps

]
, ps ∝

√
E[L2

s],
∑S

s=1 ps = 1. (5)

9. Additional Analysis
Diffusion Step Sampling Method. In Table 8, we com-
pare importance sampling with uniform sampling on the
Breakfast dataset. The advantages of importance sampling
over uniform sampling are not definitively clear. While
it demonstrates superior performance in scenarios with
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Samp. β (α = 0.2) β (α = 0.3)

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

Uni. 23.67 23.54 23.67 22.52 32.14 32.27 32.82 30.83
Imp. 25.33 24.59 24.39 22.74 32.13 31.83 31.18 30.77

Table 8. Comparison between uniform sampling and importance
sampling on Breakfast using MoC.

Encoder F1{10/25/50} Edit Acc. MoC

DETR [5] 24.84/21.79/16.56 35.19 54.33 31.48
DETR [5] (local) 29.53/25.70/19.14 36.31 52.50 30.28
RoFormer [52] 7.77/5.57/3.26 14.26 37.88 21.96

Table 9. Observation segmentation performance on Breakfast with
α = 0.3. For direct comparison, we also include the anticipation
performance (marked as gray), averaged over all prediction hori-
zons (β).

shorter observation periods, its efficacy diminishes in cases
involving longer observation durations.

Observation Segmentation Performance. Our model, en-
hanced with a classification head attached to the encoder,
also exhibits the capability to segment past observations. In
line with previous work in action segmentation [12, 35, 58],
we report frame-wise accuracy (Acc), edit score (Edit), and
F1 scores at overlap thresholds 10%, 25%, 50% (F1@10,
25, 50) in Table 9. Accuracy assesses the results at the
frame level, while the edit score and F1 scores measure the
performance at the segment level. We note that comparing
the segmentation performance of our model, optimized for
action anticipation, to state-of-the-art action segmentation
methods is not straightforward due to our model’s focus on
partial video inputs. For direct comparison, we also include
the anticipation performance averaged across all prediction
horizons. As indicated in Table 9, variants of DETR [5] sig-
nificantly surpass RoFormer [52] across all metrics, high-
lightling the significance of precise past observation recog-
nition in action anticipation. Although local attention con-
tributes positively to observation recognition, its benefit for
action anticipation is not conclusively established.

Computational Cost. Table 10 presents a comprehensive
computation analysis of our model on Breakfast, capturing
the mean over classes (MoC) across various prediction hori-
zons. The model comprises 80 million parameters and uti-
lizes 28.1 GB of GPU memory during training for a batch
size of 64. We compute the floating-point operations per
second (FLOPs) of DIFFANT using THOP1. The FLOPs
and inference time are calculated when inferring a video se-
quence of 1000 frames on a single RTX A6000 GPU, both

1https://github.com/Lyken17/pytorch-OpCounter

# Steps MoC # params GPU Mem. FLOPs Inference time

10 27.41 80.0M 28.1G 5.94G 39.04ms
25 27.32 80.0M 28.1G 10.09G 94.31ms
50 27.83 80.0M 28.1G 17.02G 185.41ms

100 27.87 80.0M 28.1G 30.87G 370.78ms

Table 10. The mean over classes (MoC) averaged across all ob-
servation ratios (α = 0.2 and 0.3) and all prediction horizons on
Breakfast, the number of parameters, the FLOPs at inference for
a video of 1000 frames, the GPU memory cost during training for
a batch size of 64, and the inference time on an A6000 GPU of
DIFFANT.

of which scale with the number of diffusion inference steps.
While our model achieves optimal performance with 100
steps, maintaining an acceptable inference time for long-
term action anticipation, it also produces satisfactory out-
comes using just 10 steps, with a notably quick inference
time of 39.04 milliseconds.

10. Additional Ablation Results
In Table 11, we provide the comprehensive results for the
ablation study (Section 5.2) with two observation ratios
α ∈ {0.2, 0.3} for Breakfast and all sets for EGTEA Gaze+.
The experimental trends generally show consistency across
both observation ratios when examining variations in the
encoder architecture and inference steps. However, there
are minor differences in the effects of varying the loss terms
and the number of action queries. Specifically, the temporal
smoothness loss positively impacts performance across all
sets on EGTEA Gaze+, but its advantage for the Breakfast
dataset is less pronounced. In fact, this loss term slightly
deteriorates performance in scenarios with shorter obser-
vations. Regarding the number of action queries, using
six queries performs slightly better for shorter observations,
whereas eight queries performs slightly better for longer ob-
servations.

11. Additional Qualitative Results
Additional qualitative results are showcased in Fig. 9, where
the observations are displayed on the left, and the right side
features the ground truth labels alongside three predictions
from our model. The prediction corresponding to future ac-
tion embeddings zS initialized with zero vectors is denoted
as Mode. In contrast, predictions derived from randomly
sampled zS are identified as Sample 1 and Sample 2. More-
over, Fig. 10 presents a collection of 20 random sample
results. Given an observed video with the actions taking
knife and cutting bun, our model successfully predicts ac-
tions associated with preparing juice and making sandwich,
demonstrating its proficiency in generating varied yet per-
tinent future actions. In instances where the observation

2
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Encoder Breakfast β (α = 0.2) Breakfast β (α = 0.3)

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

DETR Encoder [5] 25.33 24.59 24.39 22.74 32.13 31.83 31.18 30.77
DETR Encoder [5] (local) 23.39 24.59 24.28 23.48 31.01 30.58 30.38 29.16
RoFormer [52] 18.38 18.86 19.35 19.43 22.26 21.94 22.42 21.20

(a) Encoder architecture.

Loss Breakfast β (α = 0.2) Breakfast β (α = 0.3) EGTEA

Lseg Lsmooth LVLB 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5 All Freq Rare

✗ ✗ ✓ 13.31 12.71 12.95 12.71 19.19 18.31 17.70 16.14 74.11 80.59 57.26
✓ ✗ ✓ 25.35 25.81 24.83 23.64 31.66 31.44 32.17 30.91 77.07 83.27 60.95
✓ ✓ ✓ 25.33 24.59 24.39 22.74 32.13 31.83 31.18 30.77 77.33 83.47 61.35

(b) Loss terms.

# Queries Breakfast β (α = 0.2) Breakfast β (α = 0.3)

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

4 23.78 23.88 24.02 23.43 31.55 31.24 30.57 32.78
6 25.35 25.05 25.44 25.33 31.42 31.20 31.38 30.57
8 25.33 24.59 24.39 22.74 32.13 31.83 31.18 30.77

10 24.53 24.85 24.32 22.22 30.50 30.01 30.43 28.57
12 26.27 24.83 24.09 23.49 29.18 28.28 29.39 26.88

(c) Number of action queries.

# Steps Breakfast β (α = 0.2) Breakfast β (α = 0.3) EGTEA

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5 All Freq Rare

5 25.29 24.15 24.09 22.74 32.05 31.64 31.35 29.58 75.18 80.95 60.15
10 24.72 23.52 23.33 22.50 32.41 31.45 31.52 29.85 76.75 83.56 59.06
25 23.76 23.23 22.71 21.55 32.32 31.81 33.05 30.14 76.69 82.58 60.78
50 24.29 23.97 23.94 23.88 31.90 31.46 33.14 30.09 76.33 82.69 59.79

100 25.33 24.59 24.39 22.74 32.13 31.83 31.18 30.77 77.33 83.47 61.35
200 23.95 23.80 23.49 22.28 31.41 31.02 31.38 30.11 76.47 82.78 60.04

(d) Number of inference steps.

Table 11. Comprehensive results of the ablation study (Section 5.2).

offers only limited insight into the current activity, as il-
lustrated in Fig. 11, our model exhibits a broader range of
potential futures. These include actions such as preparing
cereals, cooking egg, preparing fruit, and making sandwich,
alongside the actual ground truth activity of preparing milk.

Additional intermediate diffusion results are presented
in Fig. 12. Consistent with the observations detailed in Sec-
tion 5.4, the clarity and alignment of the predicted actions
with the ground truth progressively improve over time. This
improvement is evident as the reverse diffusion process ad-
vances, transforming initially indistinct future predictions
into more defined and accurate outcomes.
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Observation Prediction

GT

Mode

Sample 1

Sample 2

SIL take cup spoon powder spoon powder pour milk stir milk SIL

pour milk stir milk SIL stir milk SIL

pour milk stir milk SIL stir milk SIL

pour milk stir milk pour milk stir milk SIL

(a) Activity: Milk

GT

Mode

Sample 1

Sample 2

SIL take cup add teabag add teabag pour water SIL

add teabag pour water SIL

add teabag pour water SIL

add teabag pour water SIL

(b) Activity: Tea

GT

Mode

Sample 1

Sample 2

SIL take bowl pour cereals pour cereals pour milk SIL

pour cereals pour milk SIL stir
cereals pour milk stir

cereals SIL

pour cereals pour milk stir
cereals SIL stir

cereals SIL

pour cereals pour milk SIL stir
cereals pour milk stir

cereals SIL

(c) Activity: Cereals

GT

Mode

Sample 1

Sample 2

squeeze orange pour
juice squeeze orange pour juice S

IL
squeeze
orange

take
glass

pour
juice squeeze orange pour

juice squeeze orange pour
juice

squeeze
orange

pour
juice squeeze orange pour

juice squeeze orange pour juice SIL

squeeze
orange

take
glass

squeeze
orange

pour
juice squeeze orange pour

juice SIL

SIL
take 
plate

cut 
orange

take 
squeezer squeeze orange

(d) Activity: Juice

GT

Mode

Sample 1

Sample 2

SIL cut fruit peel fruit peel fruit take
knife cut fruit

peel fruit cut fruit peel
fruit cut fruit peel fruit cut

fruit SIL

peel fruit cut fruit peel fruit cut fruit peel fruit cut
fruit SIL

peel fruit cut fruit peel
fruit cut fruit peel fruit cut

fruit SIL

put 
fruit2box

put 
fruit2box

cut fruit SIL

(e) Activity: Salat

Figure 9. Additional qualitative results on Breakfast. Observations are shown on the left, while the ground-truth labels and predicted
results, i.e., one deterministic prediction and two randomly sampled results, are displayed on the right. We set α as 0.3 and predict all
subsequent actions in this experiment. Action labels and durations are decoded as frame-wise action classes.
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Observation Prediction

GT

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6

Sample 7

Sample 8

Sample 9

Sample 10

Sample 11

Sample 12

Sample 13

Sample 14

Sample 15

Sample 16

Sample 17

Sample 18

Sample 19

Sample 20

SIL take knife cut bun cut bun smear butter put toppingOnTop put
bunTogetherSIL

cut
orange

take
plate smear butter put

toppingOnTop take glass pour juice SIL

cut
orange

pour
juice SIL pour

juice smear butter put
toppingOnTop

pour
juice SIL

cut
bun smear butter put

toppingOnTop pour juice SIL

cut
orange smear butter put

toppingOnTop SIL

cut
orange

take
knife smear butter put

toppingOnTop SIL

cut orange

cut
orange squeeze orange take

glass squeeze orange take
glass

squeeze
orange

S
IL

cut
orange squeeze orange take

glass
pour
juice

take
glass

pour
juice SIL

cut
bun squeeze orange take glass pour

juice squeeze orange

cut bun

cut
bun

squeeze
orange

take
glass squeeze orange take

glass
pour
juice SIL

cut
orange squeeze orange put

toppingOnTop

cut
orange

squeeze
orange

take
glass squeeze orange put

toppingOnTop
pour
juice SIL

cut
bun squeeze orange take glass pour juice SIL

cut
bun

cut
orange SIL pour juice take glass pour juice SIL

cut
bun

smear
butter squeeze orange pour

juice squeeze orange pour
juice SIL

cut
bun

smear
butter squeeze orange pour

juice take glass pour
juice SIL

cut
orange pour juice smear

butter pour juice take
glass squeeze orange SIL

cut
orange

take
knife smear butter put toppingOnTop take

glass
pour
juice SIL

cut
orange

take
knife smear butter put

toppingOnTop take glass pour
juice SIL

Figure 10. Uncertainty-aware anticipations on Breakfast of the activity make sandwich. Observation rate α is set as 0.3.
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Observation Prediction

GT

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6

Sample 7

Sample 8

Sample 9

Sample 10

Sample 11

Sample 12

Sample 13

Sample 14

Sample 15

Sample 16

Sample 17

Sample 18

Sample 19

Sample 20

SIL SIL spoon powder pour milk stir milk SIL

SIL pour cereals pour milk SIL

SIL pour cereals pour milk SIL

SIL pour cereals pour milk spoon
powder pour water SIL

SIL pour cereals pour milk SIL

SIL pour milk SIL

crack egg

SIL pour cereals

crack egg SIL

SIL cut
fruit peel fruit cut fruit peel fruit cut fruit peel fruit SIL

SIL pour cereals SIL

SIL pour
cereals pour milk smear butter put toppingOnTop put

bunTogether SIL

crack egg pour milk

SIL peel fruit put toppingOnTop put
bunTogether SIL

SIL

SIL pour
cereals pour milk peel fruit pour milk SIL

SIL pour milk peel fruit SIL

SIL pour
cereals pour milk stir

cereals peel fruit put
bunTogether SIL

SIL pour cereals pour
milk pour cereals pour milk stir

cereals SIL

SIL pour cereals pour milk stir
cereals put toppingOnTop put

bunTogether SIL

SIL pour cereals pour milk SIL

Figure 11. Uncertainty-aware anticipations on Breakfast of the activity prepare milk. Observation rate α is set as 0.2.
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Observation Prediction

GT
Interm.
991
Interm.
591
Interm.
191
Interm.
91
Interm.
1

SIL take bowl pour cereals pour cereals pour milk SIL

stir egg
stir tea

spoon sugar
stir cereals

pour cereals
cut bun

SIL
take plate

pour milk
stir dough

pour sugar

(a) Activity: Cereals

GT
Interm.
991
Interm.
591
Interm.
191
Interm.
91
Interm.
1

SIL cut bun smear butter smear butter take topping put toppingOnTop SIL

put bunTogether
stir egg

put pancake2plate
fry pancake

stir cereals
pour oil

cut fruit
smear butter

fry egg
stir dough

put toppingOnTop

(b) Activity: Sandwich

GT
Interm.
991
Interm.
591
Interm.
191
Interm.
91
Interm.
1

squeeze orange pour
juice

S
IL

squeeze orange
fry pancake

smear butter
put egg2plate

cut fruit
cut bun

take glass
pour juice

pour coffee pour dough2pan

take 
glassSIL take 

plate
cut 

orangetake squeezersqueeze
orange

(c) Activity: Juice

GT
Interm.
991
Interm.
591
Interm.
191
Interm.
91
Interm.
1

SIL pour coffee pour coffee

spoon sugar
stirfry egg

stir cereals
cut bun

pour egg2pan
pour flour

pour coffee
put fruit2bowl

SIL
pour milk

stir dough

(d) Activity: Coffee

Figure 12. Anticipation results of the intermediate inference steps on Breakfast. Observations are shown on the left, while the ground-truth
labels and predicted results are displayed on the right. α is set as 0.3 and all subsequent actions are predicted in this experiment. As the
inference step approaches 1, the predictions are gradually refined, and the ground truth actions emerge.
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